Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.758
1.
Int J Biol Sci ; 20(7): 2388-2402, 2024.
Article En | MEDLINE | ID: mdl-38725844

Metastasis is the leading cause of death in colorectal cancer (CRC) patients. By mediating intercellular communication, exosomes exhibit considerable value in regulating tumor metastasis. Long non-coding RNAs (lncRNAs) are abundant in exosomes and participate in regulating tumor progression. However, it is poorly understood how the cancer-secreted exosomal lncRNAs affect CRC proliferation and metastasis. Here, by analyzing the public databases we identified a lncRNA SNHG3 and demonstrated that SNHG3 was delivered through CRC cells-derived exosomes to promote metastasis in CRC. Mechanistically, exosomal SNHG3 was internalized by CRC cells and afterward upregulated the expression of ß-catenin by facilitating the intranuclear transport of hnRNPC. Consequently, the RNA stability of ß-catenin was enhanced which led to the activation of EMT and metastasis of CRC cells. Our findings expand the oncogenic mechanisms of exosomal SNHG3 and identify it as a diagnostic marker for CRC.


Colorectal Neoplasms , Exosomes , RNA, Long Noncoding , beta Catenin , Humans , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , beta Catenin/metabolism , Exosomes/metabolism , Cell Line, Tumor , RNA Stability/genetics , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis , Animals , Mice , Cell Proliferation/genetics , Mice, Nude
2.
Int J Biol Sci ; 20(7): 2370-2387, 2024.
Article En | MEDLINE | ID: mdl-38725841

The pathogenesis of Intervertebral Disc Degeneration (IDD) is complex and multifactorial, with cellular senescence of nucleus pulposus (NP) cells and inflammation playing major roles in the progression of IDD. The stimulator of interferon genes (STING) axis is a key mediator of inflammation during infection, cellular stress, and tissue damage. Here, we present a progressive increase in STING in senescent NP cells with the degradation disorder. The STING degradation function in normal NP cells can prevent IDD. However, the dysfunction of STING degradation through autophagy causes the accumulation and high expression of STING in senescent NP cells as well as inflammation continuous activation together significantly promotes IDD. In senescent NP cells and intervertebral discs (IVDs), we found that STING autophagy degradation was significantly lower than that of normal NP cells and IVDs when STING was activated by 2'3'-cGAMP. Also, the above phenomenon was found in STINGgt/gt, cGAS-/- mice with models of age-induced, lumbar instability-induced IDD as well as found in the rat caudal IVD puncture models. Taken together, we suggested that the promotion of STING autophagy degradation in senescent NP Cells demonstrated a potential therapeutic modality for the treatment of IDD.


Autophagy , Cellular Senescence , Intervertebral Disc Degeneration , Membrane Proteins , Nucleus Pulposus , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Nucleus Pulposus/metabolism , Animals , Autophagy/physiology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice , Cellular Senescence/physiology , Rats , Male , Rats, Sprague-Dawley , Humans , Mice, Inbred C57BL
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731886

The cerebrovascular endothelial cells with distinct characteristics line cerebrovascular blood vessels and are the fundamental structure of the blood-brain barrier, which is important for the development and homeostatic maintenance of the central nervous system. Cre-LoxP system-based spatial gene manipulation in mice is critical for investigating the physiological functions of key factors or signaling pathways in cerebrovascular endothelial cells. However, there is a lack of Cre recombinase mouse lines that specifically target cerebrovascular endothelial cells. Here, using a publicly available single-cell RNAseq database, we screened the solute carrier organic anion transporter family member 1a4 (Slco1a4) as a candidate marker of cerebrovascular endothelial cells. Then, we generated an inducible Cre mouse line in which a CreERT2-T2A-tdTomato cassette was placed after the initiation codon ATG of the Slco1a4 locus. We found that tdTomato, which can indicate the endogenous Slco1a4 expression, was expressed in almost all cerebrovascular endothelial cells but not in any other non-endothelial cell types in the brain, including neurons, astrocytes, oligodendrocytes, pericytes, smooth muscle cells, and microglial cells, as well as in other organs. Consistently, when crossing the ROSA26LSL-EYFP Cre reporter mouse, EYFP also specifically labeled almost all cerebrovascular endothelial cells upon tamoxifen induction. Overall, we generated a new inducible Cre line that specifically targets cerebrovascular endothelial cells.


Brain , Endothelial Cells , Integrases , Animals , Mice , Endothelial Cells/metabolism , Integrases/metabolism , Integrases/genetics , Brain/metabolism , Gene Knock-In Techniques , Mice, Transgenic , Blood-Brain Barrier/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Tamoxifen/pharmacology , Red Fluorescent Protein
4.
Toxicol Lett ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38734220

The activation of pregnane X receptor (PXR) or peroxisome proliferator-activated receptor α (PPARα) can induce liver enlargement. Recently, we reported that PXR or PPARα activation-induced hepatomegaly depends on yes-associated protein (YAP) signaling and is characterized by hepatocyte hypertrophy around the central vein area and hepatocyte proliferation around the portal vein area. However, it remains unclear whether PXR or PPARα activation-induced hepatomegaly can be reversed after the withdrawal of their agonists. In this study, we investigated the regression of enlarged liver to normal size following the withdrawal of PCN or WY-14643 (typical agonists of mouse PXR or PPARα) in C57BL/6 mice. The immunohistochemistry analysis of CTNNB1 and KI67 showed a reversal of hepatocyte size and a decrease in hepatocyte proliferation after the withdrawal of agonists. In details, the expression of PXR or PPARα downstream proteins (CYP3A11, CYP2B10, ACOX1, and CYP4A) and the expression of proliferation-related proteins (CCNA1, CCND1, and PCNA) returned to the normal levels. Furthermore, YAP and its downstream proteins (CTGF, CYR61, and ANKRD1) also restored to the normal states, which was consistent with the change in liver size. These findings demonstrate the reversibility of PXR or PPARα activation-induced hepatomegaly and provide new data for the safety of PXR and PPARα as drug targets.

5.
Drug Metab Dispos ; 2024 May 02.
Article En | MEDLINE | ID: mdl-38697851

Pregnane X receptor (PXR) is essential in the regulation of liver homeostasis and the gut microbiota is closely linked to liver physiological and pathological status. We previously found that activation of PXR significantly promotes liver enlargement through interaction with yes-associated protein (YAP). However, whether gut microbiota is contributed to PXR-induced hepatomegaly and the involved mechanisms remain unclear. In this study, C57BL/6 mice were administered the mouse-specific agonist PCN for 5 days. Depletion of gut microbiota was achieved using broad-spectrum antibiotics (ABX) and fecal microbiota transplantation (FMT) was performed to restore the gut microbial. The composition of gut microbiota was analyzed by 16S rRNA sequencing, while the expression of PXR, YAP and their downstream target genes and proteins were assessed. The results indicated that PCN treatment altered the composition and abundance of specific bacterial taxa. Furthermore, depletion of gut microbiota using ABX significantly attenuated PCN-induced hepatomegaly. FMT experiment further demonstrated that the fecal microbiota from PCN-treated mice could induce liver enlargement. Mechanistic studies revealed that ABX treatment impeded the PXR and YAP activation induced by PCN, as evidenced by decreased expression of PXR, YAP, and their downstream targets. Moreover, alterations in PXR and YAP activation were likely contributing to hepatomegaly in recipient mice following FMT from PCN-treated mice. Collectively, the current study demonstrated that gut microbiota is involved in PCN-induced hepatomegaly via regulating PXR and YAP activation, providing potential novel insights into the involvement of gut microbiota in PXR-mediated hepatomegaly. Significance Statement This work describes that the composition of gut microbiota is altered in mPXR agonist PCN-induced hepatomegaly. The treatment with an antibiotic cocktail (ABX) depletes the intestinal microbiota, leading to the impairment of liver enlargement caused by PCN. Besides, fecal microbiota transplantation (FMT) from PCN-treated mice induces liver enlargement. Further study revealed that gut microbiota is involved in hepatomegaly via regulating PXR and YAP activation.

6.
Front Psychol ; 15: 1375073, 2024.
Article En | MEDLINE | ID: mdl-38746918

Background: Health risk perception is an important predictor of health-protective behaviors according to the health belief model. However, the underlying mechanism connecting health risk perception and exercise behaviors is not well understood. The current study investigates how health risk perception predicts college students' exercise intention in the post-pandemic era in China and analyzes the mediating effect of health anxiety and the moderating effect of lay theories of health. Materials and methods: This cross-sectional study adopted convenience sampling and recruited 767 students from a province in central China. The Health Risk Perception Scale, Health Anxiety Scale, Lay Theories of Health Scale, and the Chinese version of the Exercise Intention Scale were used to measure the levels of health risk perception, health anxiety, implicit health theory, and exercise intention, respectively. Results: The results of the moderated mediation model indicated that the health risk perception of college students significantly and positively affected exercise intention (ß = 0.110, t = 2.852, p < 0.01). Meanwhile, the indirect effect of health anxiety on the relationship between health risk perception and exercise intention was significant. Furthermore, lay theories of health buffered the association between health anxiety and exercise intention, according to the moderated mediation analysis (ß = 0.068, t = 2.067, p < 0.05). For college students holding incremental health theory, the influence of health anxiety on exercise intention was positively and statistically significant. Conclusion: The health risk perception of college students can lead to health anxiety, which can positively affect their exercise intention. In addition, lay theories of health can moderate the effect of health anxiety on exercise intention. The results have practical implications for developing effective, applicable, and scalable interventions to promote physical exercise by reducing the level of entity theory of health or increasing the level of incremental theory.

7.
Rice (N Y) ; 17(1): 35, 2024 May 15.
Article En | MEDLINE | ID: mdl-38748282

BACKGROUND: Plant cell walls have evolved precise plasticity in response to environmental stimuli. The plant heterotrimeric G protein complexes could sense and transmit extracellular signals to intracellular signaling systems, and activate a series of downstream responses. dep1 (Dense and Erect Panicles 1), the gain-of-function mutation of DEP1 encoding a G protein γ subunit, confers rice multiple improved agronomic traits. However, the effects of DEP1 on cell wall biosynthesis and wall-related agronomic traits remain largely unknown. RESULTS: In this study, we showed that the DEP1 mutation affects cell wall biosynthesis, leading to improved lodging resistance and biomass saccharification. The DEP1 is ubiquitously expressed with a relatively higher expression level in tissues rich in cell walls. The CRISPR/Cas9 editing mutants of DEP1 (dep1-cs) displayed a significant enhancement in stem mechanical properties relative to the wild-type, leading to a substantial improvement in lodging resistance. Cell wall analyses showed that the DEP1 mutation increased the contents of cellulose, hemicelluloses, and pectin, and reduced lignin content and cellulose crystallinity (CrI). Additionally, the dep1-cs seedlings exhibited higher sensitivity to cellulose biosynthesis inhibitors, 2,6-Dichlorobenzonitrile (DCB) and isoxaben, compared with the wild-type, confirming the role of DEP1 in cellulose deposition. Moreover, the DEP1 mutation-mediated alterations of cell walls lead to increased enzymatic saccharification of biomass after the alkali pretreatment. Furthermore, the comparative transcriptome analysis revealed that the DEP1 mutation substantially altered expression of genes involved in carbohydrate metabolism, and cell wall biosynthesis. CONCLUSIONS: Our findings revealed the roles of DEP1 in cell wall biosynthesis, lodging resistance, and biomass saccharification in rice and suggested genetic modification of DEP1 as a potential strategy to develop energy rice varieties with high lodging resistance.

8.
Acta Otolaryngol ; : 1-9, 2024 May 14.
Article En | MEDLINE | ID: mdl-38742731

BACKGROUND: In temporal bone specimens from long-term cochlear implant users, foreign body response within the cochlea has been demonstrated. However, how hearing changes after implantation and fibrosis progresses within the cochlea is unknown. OBJECTIVES: To investigate the short-term dynamic changes in hearing and cochlear histopathology in minipigs after electrode array insertion. MATERIAL AND METHODS: Twelve minipigs were selected for electrode array insertion (EAI) and the Control. Hearing tests were performed preoperatively and on 0, 7, 14, and 28 day(s) postoperatively, and cochlear histopathology was performed after the hearing tests on 7, 14, and 28 days after surgery. RESULTS: Electrode array insertion had a significant effect for the frequency range tested (1 kHz-20kHz). Exudation was evident one week after electrode array insertion; at four weeks postoperatively, a fibrous sheath formed around the electrode. At each time point, the endolymphatic hydrops was found; no significant changes in the morphology and packing density of the spiral ganglion neurons were observed. CONCLUSIONS AND SIGNIFICANCE: The effect of electrode array insertion on hearing and intracochlear fibrosis was significant. The process of fibrosis and endolymphatic hydrops seemed to not correlate with the degree of hearing loss, nor did it affect spiral ganglion neuron integrity in the 4-week postoperative period.

9.
J Agric Food Chem ; 72(19): 10970-10980, 2024 May 15.
Article En | MEDLINE | ID: mdl-38708787

Eleven alkaloids (1-11) including seven new ones, 1-7, were isolated from the solid fermentation of Aspergillus fumigatus VDL36, an endophytic fungus isolated from the leaves of Vaccinium dunalianum Wight (Ericaceae), a perennial evergreen shrub distributed across the Southwest regions of China, Myanmar, and Vietnam. Their structures were elucidated on the basis of extensive spectroscopic methods. The isolates were evaluated for in vitro antifungal activities against five phytopathogenic fungi (Fusarium oxysporum, Coriolus versicolor, Fusarium solani, Botrytis cinerea, Fusarium graminearum). As a result, the new compounds fumigaclavine I (1), 13-ethoxycyclotryprostatin A (5), 13-dehydroxycyclotryprostatin A (6), and 12ß-hydroxy-13-oxofumitremorgin C (7) exhibited antifungal activities with MIC values of 7.8-62.5 µg/mL which were comparable to the two positive controls ketoconazole (MIC = 7.8-31.25 µg/mL) and carbendazim (MIC = 1.95-7.8 µg/mL). Furthermore, compounds 1 and 5 demonstrated potent protective and curative effects against the tomato gray mold in vivo. Preliminary structure-activity relationships of the tested indole diketopiperazine alkaloids indicate that the introduction of a substituent group at position C-13 enhances their biological activities.


Alkaloids , Aspergillus fumigatus , Endophytes , Alkaloids/pharmacology , Alkaloids/chemistry , Aspergillus fumigatus/drug effects , Endophytes/chemistry , Molecular Structure , Fusarium/drug effects , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Plant Leaves/microbiology , Plant Leaves/chemistry , Microbial Sensitivity Tests , China , Plant Diseases/microbiology
10.
J Hematol Oncol ; 17(1): 30, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711100

As the most common form of epigenetic regulation by RNA, N6 methyladenosine (m6A) modification is closely involved in physiological processes, such as growth and development, stem cell renewal and differentiation, and DNA damage response. Meanwhile, its aberrant expression in cancer tissues promotes the development of malignant tumors, as well as plays important roles in proliferation, metastasis, drug resistance, immunity and prognosis. This close association between m6A and cancers has garnered substantial attention in recent years. An increasing number of small molecules have emerged as potential agents to target m6A regulators for cancer treatment. These molecules target the epigenetic level, enabling precise intervention in RNA modifications and efficiently disrupting the survival mechanisms of tumor cells, thus paving the way for novel approaches in cancer treatment. However, there is currently a lack of a comprehensive review on small molecules targeting m6A regulators for anti-tumor. Here, we have comprehensively summarized the classification and functions of m6A regulators, elucidating their interactions with the proliferation, metastasis, drug resistance, and immune responses in common cancers. Furthermore, we have provided a comprehensive overview on the development, mode of action, pharmacology and structure-activity relationships of small molecules targeting m6A regulators. Our aim is to offer insights for subsequent drug design and optimization, while also providing an outlook on future prospects for small molecule development targeting m6A.


Adenosine , Adenosine/analogs & derivatives , Neoplasms , Small Molecule Libraries , Humans , Neoplasms/drug therapy , Adenosine/metabolism , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Epigenesis, Genetic/drug effects , Animals
12.
RSC Adv ; 14(21): 14894-14903, 2024 May 02.
Article En | MEDLINE | ID: mdl-38720977

The use of mixed halide perovskites in the preparation of blue light-emitting diodes (LEDs) is considered to be the most effective and direct approach. However, the introduction of chlorine (Cl) element might raise stability issues in the system and lead to low efficiency, thereby impeding the development of deep blue light-emitting diodes with high efficiency and stability. Determining the alloy concentration and the atomic distribution of bromine-chlorine (Br-Cl) mixed systems is essential for further application of deep blue light-emitting diodes. In this work, we have systematically investigated the stability of bromine-chlorine (Br-Cl) mixed alloy systems in various substitution configurations using high-throughput theoretical calculations. Based on this, we have examined the relationship between configuration stability and three aspects: the type of octahedra, the orientation of the octahedra and the Pb-X-Pb distortion angle in the configuration.

14.
Phytochemistry ; 223: 114120, 2024 May 04.
Article En | MEDLINE | ID: mdl-38705265

Eleven previously undescribed sesquiterpenoids (8-18), one undescribed jasmonic acid derivative (35) and 28 known compounds were isolated from the leaves of Artemisia stolonifera. Undescribed compounds with their absolute configurations were determined by extensive spectroscopic analysis, single-crystal X-ray diffraction and ECD calculation. Compound 8 was identified as a rare sesquiterpenoid featuring a rearranged 5/8 bicyclic ring system, whereas compound 17 was found to be an unprecedented monocyclic sesquiterpenoid with methyl rearrangement. Evaluation of biological activity showed that compounds 1-5 and 7 displayed cytotoxicity against six tumor cells. In the meantime, compounds 11, 12, 18 and 35 exhibited inhibitory effects against LPS-stimulated NO production in RAW 264.7 macrophage cells and reduced the transcription of IL-6 and IL-1ß in a dose-dependent manner at 25, 50 and 100 µM. Moreover, the anti-inflammatory-based network pharmacology and molecular docking analyses revealed potential target proteins of 11, 12, 18 and 35.

15.
Langenbecks Arch Surg ; 409(1): 154, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714551

BACKGROUND: In recent years, there has been an increasing prevalence of patients with papillary thyroid microcarcinoma (PTMC) without lymph node involvement in medical centers worldwide. For patients who are unable to undergo active surveillance (AS) and are afraid of postoperative complications, conformal thyroidectomy may be a suitable option to ensure both preservation of function and complete removal of the tumor. METHODS: The patients in the cohort during 2010 to 2015 were retrospectively enrolled strictly following the inclusion and exclusion criteria. The observation and control groups were defined based on the surgical approach, with patients in the observation group undergoing conformal thyroidectomy and patients in the control group undergoing lobectomy. Event-free survival (EFS), the interval from initial surgery to the detection of recurrent or metastatic disease, was defined as the primary observation endpoint. RESULTS: A total of 319 patients were included in the study, with 124 patients undergoing conformal thyroidectomy and 195 patients undergoing lobectomy. When compared to lobectomy, conformal thyroidectomy demonstrated reduced hospital stays, shorter operative times, and lower rates of vocal cord paralysis and hypoparathyroidism. Furthermore, the mean bleeding volume during the operation and the rate of permanent hypothyroidism were also lower in the conformal thyroidectomy group than in the lobectomy group. However, there was no statistically significant difference observed in the 5- and 10-year EFS between the two groups. CONCLUSIONS: Conformal thyroidectomy had advantages in perioperative management and short-term complication rates, with an EFS that was not inferior to that of lobectomy. Thus, conformal thyroidectomy is a feasible option for low-risk PTMC patients.


Carcinoma, Papillary , Thyroid Neoplasms , Thyroidectomy , Humans , Thyroidectomy/methods , Thyroidectomy/adverse effects , Female , Male , Thyroid Neoplasms/surgery , Thyroid Neoplasms/pathology , Thyroid Neoplasms/mortality , Retrospective Studies , Middle Aged , Carcinoma, Papillary/surgery , Carcinoma, Papillary/pathology , Carcinoma, Papillary/mortality , Adult , Follow-Up Studies , Feasibility Studies , Cohort Studies , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Treatment Outcome , Operative Time
16.
Article En | MEDLINE | ID: mdl-38706177

Perovskite nanocrystal (PeNC) arrays are showing a promising future in the next generation of micro-light-emitting-diode (micro-LED) displays due to the narrow emission linewidth and adjustable peak wavelength. Electrohydrodynamic (EHD) inkjet printing, with merits of high resolution, uniformity, versatility, and cost-effectiveness, is among the competent candidates for constructing PeNC arrays. However, the fabrication of red light-emitting CsPbBrxI(3-x) nanocrystal arrays for micro-LED displays still faces challenges, such as low brightness and poor stability. This work proposes a design for a red PeNC colloidal ink that is specialized for the EHD inkjet printing of three-dimensional PeNC arrays with enhanced luminescence and stability as well as being adaptable to both rigid and flexible substrates. Made of a mixture of PeNCs, polymer polystyrene (PS), and a nonpolar xylene solvent, the PeNC colloidal ink enables precise control of array sizes and shapes, which facilitates on-demand micropillar construction. Additionally, the inclusion of PS significantly increases the brightness and environmental stability. By adopting this ink, the EHD printer successfully fabricated full-color 3D PeNC arrays with a spatial resolution over 2500 ppi. It shows the potential of the EHD inkjet printing strategy for high-resolution and robust PeNC color conversion layers for micro-LED displays.

17.
J Integr Med ; 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38714484

BACKGROUND: Previously published meta-epidemiological studies focused on Western medicine have identified some trial characteristics that impact the treatment effect of randomized controlled trials (RCTs). Nevertheless, it remains unclear if similar associations exist in RCTs on Chinese herbal medicine (CHM). Further, Chinese medicine-related characteristics have not been explored yet. OBJECTIVE: To investigate trial characteristics related to treatment effect estimates on CHM RCTs. SEARCH STRATEGY: This meta-epidemiological study searched 5 databases for systematic reviews on CHM treatment published between January 2011 and July 2021. INCLUSION CRITERIA: An eligible systematic review should only include RCTs of CHM and conduct at least one meta-analysis. DATA EXTRACTION AND ANALYSIS: Two reviewers independently conducted data extraction on general characteristics of systematic reviews, meta-analyses and included RCTs. They also assessed the risk of bias of RCTs using the Cochrane risk of bias tool. A two-step approach was used for data analyses. The ratio of odds ratios (ROR) and difference in standardized mean differences (dSMD) with 95% confidence interval (CI) were applied to present the difference in effect estimates for binary and continuous outcomes, respectively. RESULTS: Ninety-one systematic reviews, comprising 1338 RCTs were identified. For binary outcomes, RCTs incorporated with syndrome differentiation (ROR: 1.23; 95 % CI: [1.07, 1.39]), adopting Chinese medicine formula (ROR: 1.19; 95% CI: [1.03, 1.34]), with low risk of bias on incomplete outcome data (ROR: 1.29; 95% CI: [1.06, 1.52]) and selective outcome reporting (ROR: 1.12; 95% CI: [1.01, 1.24]), as well as a trial size ≥ 100 (ROR: 1.23; 95% CI: [1.04, 1.42]) preferred to show larger effect estimates. As for continuous outcomes, RCTs with Chinese medicine diagnostic criteria (dSMD: 0.23; 95% CI: [0.06, 0.41]), judged as high/unclear risk of bias on allocation concealment (dSMD: -0.70; 95% CI: [-0.99, -0.42]), with low risk of bias on incomplete outcome data (dSMD: 0.30; 95% CI: [0.18, 0.43]), conducted at a single center (dSMD: -0.33; 95% CI: [-0.61, -0.05]), not using intention-to-treat analysis (dSMD: -0.75; 95% CI: [-1.43, -0.07]), and without funding support (dSMD: -0.22; 95% CI: [-0.41, -0.02]) tended to show larger effect estimates. CONCLUSION: This study provides empirical evidence for the development of a specific critical appraisal tool for risk of bias assessments on CHM RCTs. Please cite this article as: Wang BH, Lin YL, Gao YY, Song JL, Qin L, Li LQ, et al. Trial characteristics and treatment effect estimates in randomized controlled trials of Chinese herbal medicine: A meta-epidemiological study. J Integr Med. 2024; Epub ahead of print.

18.
Redox Biol ; 73: 103139, 2024 Apr 27.
Article En | MEDLINE | ID: mdl-38696898

In this study, we observed worsening metabolic crosstalk in mouse models with concomitant metabolic disorders such as hyperhomocysteinemia (HHcy), hyperlipidemia, and hyperglycemia and in human coronary artery disease by analyzing metabolic profiles. We found that HHcy worsening is most sensitive to other metabolic disorders. To identify metabolic genes and metabolites responsible for the worsening metabolic crosstalk, we examined mRNA levels of 324 metabolic genes in Hcy, glucose-related and lipid metabolic systems. We examined Hcy-metabolites (Hcy, SAH and SAM) by LS-ESI-MS/MS in 6 organs (heart, liver, brain, lung, spleen, and kidney) from C57BL/6J mice. Through linear regression analysis of Hcy-metabolites and metabolic gene mRNA levels, we discovered that SAH-responsive genes were responsible for most metabolic changes and all metabolic crosstalk mediated by Serine, Taurine, and G3P. SAH-responsive genes worsen glucose metabolism and cause upper glycolysis activation and lower glycolysis suppression, indicative of the accumulation of glucose/glycogen and G3P, Serine synthesis inhibition, and ATP depletion. Insufficient Serine due to negative correlation of PHGDH with SAH concentration may inhibit the folate cycle and transsulfurarion pathway and consequential reduced antioxidant power, including glutathione, taurine, NADPH, and NAD+. Additionally, we identified SAH-activated pathological TG loop as the consequence of increased fatty acid (FA) uptake, FA ß-oxidation and Ac-CoA production along with lysosomal damage. We concluded that HHcy is most responsive to other metabolic changes in concomitant metabolic disorders and mediates worsening metabolic crosstalk mainly via SAH-responsive genes, that organ-specific Hcy metabolism determines organ-specific worsening metabolic reprogramming, and that SAH, acetyl-CoA, Serine and Taurine are critical metabolites mediating worsening metabolic crosstalk, redox disturbance, hypomethylation and hyperacetylation linking worsening metabolic reprogramming in metabolic syndrome.

19.
Microbiol Spectr ; : e0009624, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695572

Pseudomonas can lead to peritoneal dialysis-associated peritonitis, which is characterized by a poor prognosis, such as a substantial failure rate and a high death rate. This study aimed to provide an overview of Pseudomonas peritonitis's clinical features, the regimens of antibiotic, antibiotic resistance, and outcomes in peritoneal dialysis (PD) patients. This study observed patients with Pseudomonas peritonitis in two large PD centers in South China from January 2008 to December 2022. The demographics, symptomatology, antibiotics regimens, resistance to common antibiotics, and clinical outcomes of all included patients were reviewed. A total of 3,459 PD patients were included, among them 57 cases of peritonitis caused by Pseudomonas, including 48 cases (84.2%) of Pseudomonas aeruginosa. The incidence rate of Pseudomonas peritonitis was 0.0041 episode per patient-year. Of them, 28.1% (16 cases) of the patients were accompanied by exit site infection (ESI), and all had abdominal pain and turbid ascites at the time of onset. The most commonly used antibiotic combination was ceftazidime combined with amikacin. Approximately 89% of Pseudomonas species were sensitive to ceftazidime, and 88% were sensitive to amikacin. The overall primary response rate was 28.1% (16 patients), and the complete cure rate was 40.4% (23 patients). There was no significant difference in the complete cure rate of peritonitis using three and other antibiotic treatment regimens (44.8% vs 46.4%; P = 0.9). The successful treatment group had higher baseline albumin level (35.9 ± 6.2; P = 0.008) and residual urine volume (650.7 ± 375.5; P = 0.04). Although the incidence of peritonitis caused by Pseudomonas was low, the symptoms were serious, and prognosis was very poor. Pseudomonas was still highly susceptible to first-line antibiotics currently in use against Gram-negative bacteria. Patients with successful treatment had higher albumin levels and higher urine output. IMPORTANCE: Although the incidence of peritoneal dialysis-associated peritonitis caused by Pseudomonas is very low, it seriously affects the technique survival of peritoneal dialysis patients. However, there are few studies and reports on Pseudomonas peritonitis in the Chinese mainland area. Therefore, the purpose of this study is to describe the clinical characteristics, the regimens of antibiotic, drug resistance, and outcome of peritoneal dialysis patients in southern China in the past 15 years and summarize the clinical experience in the treatment of Pseudomonas peritonitis.

20.
Regen Ther ; 27: 365-380, 2024 Dec.
Article En | MEDLINE | ID: mdl-38694448

Brachial plexus injury (BPI) with motor neurons (MNs) damage still remain poor recovery in preclinical research and clinical therapy, while cell-based therapy approaches emerged as novel strategies. Previous work of rat skin precursor-derived Schwann cells (SKP-SCs) provided substantial foundation for repairing peripheral nerve injury (PNI). Given that, our present work focused on exploring the repair efficacy and possible mechanisms of SKP-SCs implantation on rat BPI combined with neurorrhaphy post-neurotomy. Results indicated the significant locomotive and sensory function recovery, with improved morphological remodeling of regenerated nerves and angiogenesis, as well as amelioration of target muscles atrophy and motor endplate degeneration. Besides, MNs could restore from oxygen-glucose-deprivation (OGD) injury upon SKP-SCs-sourced secretome treatment, implying the underlying paracrine mechanisms. Moreover, rat cytokine array assay detected 67 cytokines from SKP-SC-secretome, and bioinformatic analyses of screened 32 cytokines presented multiple functional clusters covering diverse cell types, including inflammatory cells, Schwann cells, vascular endothelial cells (VECs), neurons, and SKP-SCs themselves, relating distinct biological processes to nerve regeneration. Especially, a panel of hypoxia-responsive cytokines (HRCK), can participate into multicellular biological process regulation for permissive regeneration milieu, which underscored the benefits of SKP-SCs and sourced secretome, facilitating the chorus of nerve regenerative microenvironment. Furthermore, platelet-derived growth factor-AA (PDGF-AA) and vascular endothelial growth factor-A (VEGF-A) were outstanding cytokines involved with nerve regenerative microenvironment regulating, with significantly elevated mRNA expression level in hypoxia-responsive SKP-SCs. Altogether, through recapitulating the implanted SKP-SCs and derived secretome as niche sensor and paracrine transmitters respectively, HRCK would be further excavated as molecular underpinning of the neural recuperative mechanizations for efficient cell therapy; meanwhile, the analysis paradigm in this study validated and anticipated the actions and mechanisms of SKP-SCs on traumatic BPI repair, and was beneficial to identify promising bioactive molecule cocktail and signaling targets for cell-free therapy strategy on neural repair and regeneration.

...